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Abstract

Almost all catchments plot within a small envelope around the Budyko curve. This ap-
parent behaviour suggests that organizing principles may play a role in the evolution of
catchments. In this paper we applied the thermodynamic principle of maximum power
as the organizing principle.

In a top-down approach we derived mathematical formulations of the relation be-
tween relative wetness and gradients driving runoff and evaporation for a simple one-
box model. We did this in such a way that when the conductances are optimized with
the maximum power principle, the steady state behaviour of the model leads exactly
to a point on the Budyko curve. Subsequently we derived gradients that, under con-
stant forcing, resulted in a Budyko curve following the asymptotes closely. With these
gradients we explored the sensitivity of dry spells and dynamics in actual evaporation.
Despite the simplicity of the model, catchment observations compare reasonably well
with the Budyko curves derived with dynamics in rainfall and evaporation. This indi-
cates that the maximum power principle may be used (i) to derive the Budyko curve
and (ii) to move away from the empiricism in free parameters present in many Budyko
functions. Future work should focus on better representing the boundary conditions of
real catchments and eventually adding more complexity to the model.

1 Introduction

In different climates, partitioning of rainwater into evaporation and runoff is different as
well. Yet, when plotting the evaporation fraction against the aridity index (ratio of po-
tential evaporation and rainfall), almost all catchments plot in a small envelope around
a single empirical curve known as the Budyko curve (e.g. Arora, 2002). The fact that
almost all catchments worldwide plot within this small envelope around this curve in-
spired several scientists to speculate whether this is due to co-evolution of climate and
terrestrial catchment characteristics (e.g. Harman and Troch, 2014). Co-evolution be-
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tween climate and the terrestrial system could in turn be explained by an underlying
organizing principle which determines optimum system functioning (Sivapalan et al.,
2003; McDonnell et al., 2007; Schaefli et al., 2011; Thompson et al., 2011; Ehret et al.,
2014; Zehe et al., 2014). As hydrological processes are essentially dissipative, we sug-
gest that thermodynamic optimality principles are very interesting candidates.

Belonging to this class of principles are the closely related principles of maximum en-
tropy production (Kleidon and Schymanski, 2008; Kleidon, 2009; Porada et al., 2011;
Wang and Bras, 2011; del Jesus et al., 2012; Westhoff and Zehe, 2013) and maximum
power (Kleidon and Renner, 2013; Kleidon et al., 2013; Westhoff et al., 2014) on the
one hand — both defining the optimum configuration between competing fluxes across
the system boundary — and, on the other hand, minimum energy dissipation (Rinaldo
et al., 1992; Rodriguez-lturbe et al., 1992; Hergarten et al., 2014) or maximum free
energy dissipation (Zehe et al., 2010, 2013), focusing on free energy dissipation asso-
ciated with changes in internal state variables as a result of boundary fluxes, i.e. soil
moisture and capillary potential, and a related optimum system configuration. In this
research we focus on the maximum power principle.

With these principles, an optimum configuration between two competing fluxes can
be determined. It seems therefore potentially suitable to derive the Budyko curve from
such a principle, since the Budyko curve describes the competition between runoff and
evaporation. This is also the aim of this study.

The validity and the practical value of thermodynamic optimality principles are still
debated and the partly promising results reported in the listed studies might be just
a matter of coincidence. There is a vital search for defining rigorous tests to assess
how far thermodynamic optimality principles bears and applies. The Budyko curve ap-
pears very well suited for such a test, as it condenses relative weights of the steady
state water fluxes in most catchments around the world. It is thus not astonishing that
there have been several attempts to reconcile the Budyko curve with thermodynamic
optimality principles. For example, Porada et al. (2011) used the maximum entropy
production principle to optimize the runoff conductance and evaporation conductance
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of a bucket model being forced with observed rainfall and potential evaporation of the
35 largest catchments in the world. The resulting modelled fluxes were plotted in the
Budyko diagram and followed the curve with a similar scatter as real world catchments.

Another very interesting approach was presented by Kleidon and Renner (2013) and
Kleidon et al. (2014), using the perspective of the atmosphere. They maximized power
of the vertical convective motion transporting heat and moisture upwards using the
Carnot limit to constrain the sensible heat flux. This motion is driven by the temperature
differences between the surface and the atmosphere, while at the same time depleting
this temperature gradient, leading to a maximum in power. Additionally, evaporation at
the surface and condensation in the atmosphere depletes this gradient even further
at the expense of more vertical moisture transport and thus more convective motion.
Their approach showed some more spreading around the Budyko curve for the same
35 catchments as used in Porada et al. (2011), but they used a simpler model that
has to be forced with much less observations, namely solar radiation, precipitation and
surface temperature.

Very recently, Wang et al. (2015) used the maximum entropy production principle
to derive directly an expression for the Budyko curve. They started from the expres-
sion of Kleidon and Schymanski (2008) and by maximizing the entropy production of
the whole system they reached the expression for the Budyko curve as formulated by
Wang and Tang (2014). This is an intriguing result that partly contradicts the findings
of Westhoff and Zehe (2013), whose study revealed within simulations with an HBV
type conceptual model, that joint optimization of overall entropy production results in
optimum conductances approaching zero.

In this study we used a model comparable to the one proposed by Porada et al.
(2011) and derived the Budyko curve from the maximum power hypothesis in an in-
verse manner. With this backward analysis we found proper relations between relative
saturation of the subsurface and the gradients driving runoff and evaporation.

This backward analysis is performed for constant forcing and evaporation. Since
Westhoff et al. (2014) showed mathematically that dynamics in forcing or in actual
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evaporation may result to different optimum conductances (and sometimes even two
maxima in power) we tested sensitivities to these dynamics here as well. We expect
these dynamics to influence the optimum conductance k; and subsequently the whole
Budyko curve.

2 The maximum power principle

The maximum power principle implies that a system evolves in such a way that steady
state fluxes across a systems boundary produce maximum power. It is directly derived
from the first and the second laws of thermodynamics, and is very well explained in
Kleidon and Renner (e.g. 2013). Here we give only a short description: let us start by
considering a warm and a cold reservoir, which are connected to each other. The warm
reservoir is forced by a constant energy input J;, and the cold reservoir is cooled by
a heat flux J,. In steady state J;, = J,; and both reservoirs have a constant temper-
ature T,, and T, respectively, with 7,, > 7.. The heat flux between the two reservoirs

produces entropy, which is given by:
_ Jout _ (1)
7-c 7-h

However, instead of transferring all incoming energy to the cold reservoir, the heat gra-
dient can also be used to perform work. This means that in steady state, the incoming
energy flux J;, equals the outgoing energy flux J, plus the rate of work P (which is
power) performed by the system.

For given temperatures of both reservoirs, the theoretical maximum rate of work is
given by the Carnot limit:
T, T,
Pcarmot = JinT—C- (2)
h
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Power is thus given as the product of a flux (in this case J,;) and its driving potential
difference (in this case (T}, — T,;) scaled by 7). Since the temperature of both reservoirs
is also influenced by the heat flux between the two reservoirs, there exist a trade-off
between the flux and the temperature difference. Subsequently, a maximum in power
exists.

In the remainder of this article we used specific water fluxes [LT'1] and potential
differences Lipigh — Uiow In Mmeter water column [L], where the flux is given as the product

of a specific conductance k [T'] and the potential difference. We recognize that, in
order to come to the same units as power, these formulations should be multiplied by
the water density, gravitational acceleration and a cross-sectional area, but since we
are looking for a maximum, and these parameters are constant, we can leave them out.
We also use the word gradient for the potential difference g, — Ujow, Where the length
scale with which the difference should be divided is incorporated in the conductance.
With these formulation, power is given by

P = k(Unign — .ulow)2 ®)

where k is the free parameter we optimized to find a maximum in power.

3 Mathematical framework
3.1 Initial model setup

Our model consists of a simple reservoir being filled by rainfall Q;, and drained by evap-

oration £, and runoff Q,. Using the same expressions as in Kleidon and Schymanski

(2008), the steady state mass balance and corresponding fluxes are expressed by

Qi =E,+Q, (4)

Ea = ke (Us — Hatm) (5)

Q= k(U — 1y) (6)
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where ug, u, and U, are the chemical potential of the soil, chemical potential of the
free water surface of the nearest river and chemical potential of the atmosphere, while
ks and k, are the specific conductances of evaporation and runoff. In these expressions,
Us and ug — u, are functions of the relative saturation A in the reservoir:

Ge(h) = us(h) (7)
G,(h) = us(h) = u,(h) (8)
where Gg(h) and G,(h) can have any form as long as they are strictly monotonically
increasing with increasing relative saturation. For example, Porada et al. (2011) used
the van Genuchten model (van Genuchten, 1980) and gravitational potential to derive

the chemical potential of the soil. However, here we will derive them in such a way that,
under constant forcing, we end up exactly at the Budyko curve.

3.2 Backwards analysis to determine the driving gradients
3.2.1 Optimum k; matching the Budyko curve

Let us first find an optimum conductance k leading to a point on the Budyko curve.
We started with the following expression for the Budyko curve (e.g. Choudhury, 1999;
Yang et al., 2008, although other expression can in principle be used as well):

L 9)

with E,; being the potential evaporation. Now we make an important assumption to
define £,,;: we assume that evaporation is maximum when in Egs. (5) and (8), s =0,
meaning that the relative wetness is 1, implying no water limitation. With this assump-
tion, potential evaporation is given by £ = ko(—Ham) (Note that uyy, is always nega-
tive). Combining this equation with Egs. (5), (7) and (9) results in:
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K = i (10)

(Golt) = am) 1+ [_é’%]")w

where h" is the steady state relative wetness leading to a point at the Budyko curve.

3.2.2 Maximum power by evaporation

As mentioned above, k; should also correspond to a maximum in power by evaporation
(P)- This means that a function P,(k.) should be found which is always larger than zero
for k, € (0, +00) and where 0P, /8k, = 0 at k, = k. A possible function satisfying these
constraints is:

a2
Pe(ke) = kel:_Ze_<kio )

(11)

where F, and k, are the reference power [L2T‘1] and reference conductance [T‘1],
respectively. Setting the derivative to zero for k, = kg yields:

* 2
aPe * x2 2 PO - k?(_(;a
5% = <2kea—2ke +k0>k—ge (%) =0 (12)
k2
—aski- g0
e

* *\\2
resulting in P, (k) = kepo/ko9-((ke-ke)/ko+ko/(2ke)) _

Combining this expression with Egs. (3) and (7): P, = k(G — :uatm)zs G, is expressed
as:

P, -
Ge(ke) ==+ k—e

(it

2
ko 2kg, ) + ﬂatm ) (1 3)
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Since we neglect condensation (Gg(ks) — Uaim = 0), only the positive solution remains.
Inserting Eq. (13) into Eq. (10) and setting k. = k; yields:

K = i (14)

e 2
K
0 1/n
Po o a2 [ Qin ]n
V —e Y 1+ -
kO _ke»uatm

which can be solved iteratively for k.
Combining these results with the mass balance (Egs. 4-6) yields the following ex-
pression for runoff gradient G, as a function of kg:

* 2
R P
Gr(ke)=%__e\l Oe ( ko +2ke) ] (15)

ko k \ ko
Note that any value of k, does lead to a point on the Budyko curve.

3.2.3 Maximum power by runoff

Although the Budyko curve does not depend on the value of k,, an optimum k; can still
be found by maximizing power by runoff. For this, the similar steps as for optimizing A,
are used, where in Egs. (11)—(13) &, is simply replaced by k,, resulting in a gradient for
runoff as a function of k.:

. 2
Py ~(“mt+s
Gy (k;) = J Po (5t e2t) (16)

ko

while from the mass balance (Eqgs. 4-8), k, is given by

k = C?in - [Ge(h) - »uatm]
" Gi(h) '

(17)
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Combining these two equations and setting k, to &; yields:

k: _ Qin - k; [Ge(k;) - :uatm] (1 8)
k5

P, Tz

k_ge 4K

which can also be solved iteratively for ;.
3.3 Forward analysis

To apply the maximum power principle in any hydrological model, the model should run
until a (quasi-)steady state is reached. Within the above presented backward analysis
the steady state optimum gradients are simply found by giving k. the value of kg in
Eqg. (13) and &, = k; in Eq. (15).

However, when the relative wetness h evolves over time, the gradients should be
resolved as a function of the relative wetness (G, = G4(h) and G, = G,(h)). To do this,
we assumed that # is a linear function of G,(k.) scaled between zero and unity:

G.(h) = min [G,(k,)] + (max [G,(k.)] — min [G,(k,)]) h (19)

where the maximum in G,(k,) occurs when the second term on the right-hand-side of
Eq. (15) is zero: max [G,(k,)] = % and the minimum value is derived when this sec-

2
. . . . K . K
ond term is maximum, occurring at k = kg =1/2 | kg — 5 + \/(ke - ﬁ) +4
e e

Inserting this into Eq. (15) yields:

. Qu K™ | Py ~(Etarto)
min [G,(k.)] = — - —e 0 e/ . (20)

k. Kk
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If we now plot / vs. G, a unique relation between the two exists (Fig. 1).
With the gradients as functions of A, the non-steady mass balance equation is written
as

dh
Smaxa = Qin — kG (h) — ks (G (h) = Uatm) (21)

where S, is the maximum storage depth [L] and ¢ is time [T]. Now, the time evolution
of the relative wetness can be simulated.

4 Results and discussion from forward analysis
4.1 Constant forcing

With the known relations between relative wetness and gradients driving evaporation
and runoff, the forward model was run and k. be optimized by maximizing power. With
constant forcing, each value of u,, resulted in a point on the Budyko curve (Fig. 2a,
a value of n = 2 is used). In Fig. 2b, the time evolution of the relative wetness and both
gradients are shown for an initially saturated and an initially dry state indicating that
irrespective of the initial state, the forward model evolves to a steady state.

4.2 Sensitivity to dry spells

By introducing dynamics in forcing, we expected the resulting budyko curve to deviate
from the initial one derived with constant forcing. It therefore matters how the initial one
looks like. The parameter n in Eq. (9) is the key parameter to adapt the initial curve.

In literature, a value of n=2 (and small variations around) is often used since it
gives a good fit for many catchments: In fact, n is an empirical parameter often linked
to catchment properties. To move away from this empiricism for n, we subsequently
used a much larger value in order to closely follow the asymptotes of the Budyko curve.
A value of n — +oo follows these asymptotes exactly, but for numerical reasons we
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used n = 20 (differences with n = 10 are minor (not shown)). Next, we added dry spells
and dynamics in evaporation (e.g. when trees lose their leaves the evaporative con-
ductance k. goes to zero) and tested how this influenced the Budyko curve.

To test sensitivities to dry spells, simple block functions were used, with either a pre-
defined constant input or no input at all. For longer relative lengths of the dry spell,
the slope of the curves becomes smaller until a maximum of £,/Q;, = 0.98 (Fig. 3).
The reason the asymptotes do not reach unity lies in the fact that already at very short
dry spells a second maximum in power evolves, while the first maximum disappears
quickly with increasing dry spells. This is in line with results of Westhoff et al. (2014)
while also in Zehe et al. (2013) a second optimum is present. Although interesting,
we leave a better exploration of this transition zone where two maxima exist for future
research.

These curves were compared with data of real catchments that have a relatively
stable wet period interspersed with a regular dry period. The Mupfure catchment (Zim-
babwe, Savenije, 2004) with approximately seven months without rain (Fig. S1 in the
Supplement), plots very close to the theoretical curve with the same length of the dry
spell. However, catchments from the MOPEX database (Schaake et al., 2006) with
clear consistent dry spells plot still far from the respective theoretical curves. This dis-
crepancy can be partly explained by the somewhat arbitrary way the number of dry
months are determined: The MOPEX catchments are filtered to have only those catch-
ments having at least one month with a median rainfall < 2.5 mm month™' and a coeffi-
cient of variance < 0.5 for all months with a median rainfall > 25 mmmonth™". The final
number of dry months were determined maximizing the difference between the mean
monthly precipitation of the X driest months minus the mean monthly precipitation of
the 1 — X wettest months, where X =1,2...12.

For example, the MOPEX catchment with a four month dry spell could also be argued
to have a dry spell of seven months (Fig. S1, MOPEX ID: 11222000) and similarly, the
MOPEX catchment with a five month dry spell (Fig. S1, MOPEX ID: 11210500) could
also be argued to have one of six months. If these “corrections” are made, the variability
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within the MOPEX catchments is consistent (with longer dry spells plotting more to the
right), but there is still a discrepancy of one to two months, indicating that the model
should still be improved.

4.3 Sensitivity to dynamics in actual evaporation

We also tested the sensitivity of dynamics in actual evaporation by periodically turning
k. on and off, while keeping the rainfall constant. This sensitivity analysis shows that
the longer actual evaporation is switched off, the smaller the slope of the Budyko curve
and the smaller the maximum value of the evaporation index (Fig. 4). Comparing the
different curves with real catchments, shows that data from the Ourthe catchment (Bel-
gium) is relatively close to its respective line (its months without actual evaporation are
estimated from Fig. 6.1 of Aalbers, 2015). Also the MOPEX catchments plot relatively
close to their respective lines. However, the way the MOPEX catchments were filtered
is somewhat arbitrary (only those having a coefficient of variance < 0.12 for monthly
median rainfall and with at least one month with a monthly median maximum ambient
temperature < 0°C are taken into account; a month is considered to have no actual
evaporation if the monthly median maximum air temperature < 0 °C; after Devlin, 1975,
Fig. S2).

At first sight the comparison with data looks better than in the case of dry spells.
However, all plotted catchments have an aridity index between 0.5 and 0.71 and within
this range the different curves plot also close to each other. Yet, it is still somewhat
surprising that the comparison is relatively good, since the modelled lines have been
created by assuming a constant atmospheric demand (u ;) for each run, which is dif-
ferent from real catchments that have a more or less sinus shape potential evaporation
over the year. However, we consider it as future work to better represent the real world
dynamics in the model.

7833

Jladed uoissnosiq | Jadeq uoissnosiq | Jedeq uoissnosiq | Jaded uoissnosiqg

HESSD
12, 7821-7842, 2015

Budyko curve
derived with
maximum power
principle

M. Westhoff et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/7821/2015/hessd-12-7821-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/7821/2015/hessd-12-7821-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

5 Conclusions and outlook

The Budyko curve is an empirical proof that only a subset of all possible combina-
tions of aridity index and evaporation index emerges in nature. It belongs to the, so-
called Darwinian models (Harman and Troch, 2014), focusing on emergent behaviour
of a system as a whole. Since the maximum power principle links Newtonian models
with the Darwinian models, it has indeed potential to derive the Budyko curve with an,
in essence, Newtonian model.

We presented a top-down approach in which we derived relations between relative
wetness and chemical potentials that lead, under constant forcing, to a point on the
Budyko curve when the maximum power principle is applied. Subsequently sensitivities
to dynamics in forcing and actual evaporation were tested.

Since the Budyko curve is an empirical curve, the parameter n is often linked to
catchment specific characteristics such as land use, soil water storage, climate sea-
sonality or spatial scales (e.g. Milly, 1994; Choudhury, 1999; Zhang et al., 2004; Potter
et al., 2005). Although correlations between characteristics and n have been found, it
remains a calibration parameter.

Here, to avoid an arbitrary (calibrated) value for n we used a large n, reflecting the
two asymptotes of the Budyko curve, and analysed deviations from this line by intro-
ducing temporal dynamics. Although we used simple block functions to test these sen-
sitivities they compare reasonably well with observations. Nevertheless, improvements
could be made by modelling dynamics closer to reality, or even by adding multiple
parallel reservoirs to account for spatial variability within a catchment.

Even though the model represents observations reasonably well (despite its simplic-
ity), the method used here is by no means a proof that the maximum power principle
does apply for hydrological systems. This is due to the top-down derivation of the gra-
dients in which the maximum power principle is used explicitly. In principle, the method
could also be used with respect to any other optimization principle. However, the rea-
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sonable fits with observations gives floor to further explore this methodology — including
the maximum power principle.

The Supplement related to this article is available online at
doi:10.5194/hessd-12-7821-2015-supplement.
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Figure 3. Sensitivity to periodic dry spells to the forward model. MOPEX catchments are
filtered to have only those catchments having at least one month with a median rainfall
<25mmmonth™" and a coefficient of variance < 0.5 for all months with a median rainfall
> 25 mmmonth™'. The final number of dry months were determined maximizing the difference
between the mean monthly precipitation of the X driest months minus the mean monthly pre-
cipitation of the 1 — X wettest months, where X = 1,2...12. Error bars indicate one standard
deviation and are determined with bootstrap sampling.
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< 0°C; a month is considered to have no actual evaporation if the monthly median maximum
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